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Abstract—An underactuated nonholonomic robot with a
bounded control input travels with a constant speed in a 3D
workspace. An unknown time variant scalar field is defined on
this workspace. The robot should detect, locate, and densely
sweep a moving and deforming 2D isosurface (level set), which is
the locus of points where the field takes a given value. The sensory
data consist of the value of the field at the current location, robot’s
coordinate along a certain (typically, vertical) space direction,
and the orientation of this direction relative to the robot. We
offer a new navigation law under which the robot reaches the
targeted isosurface from an occasional initial location and then
scans the part of this surface in between two given “altitudes”.
This law does not rely on estimation of the field gradient
and is undemanding in terms of motion and computation. Its
convergence is demonstrated by a mathematically rigorous result
and computer simulation tests.

Index Terms—Mobile robots, sensor based 3D navigation,
tracking environmental level sets

I. INTRODUCTION

Robotic tracking and monitoring of environmental bound-
aries has received considerable attention over the last two
decades due to an ever-expanding range of applications. Ex-
amples include detection of and surveillance over contaminant
clouds [1] or areas of harmful algal blooms [2], to name just
a few. Typically, the mission is to locate and reach the set
where an environmental field assumes a certain value and to
subsequently move over this level set, with the intention to
repeatedly cover it via a sort of a “sweeping” maneuver. As a
result, the robot exposes and takes control over the border of
the region where the field takes greater values, which region is
often the true focus of interest. In such missions, the field value
can be often measured only at the robot’s current location.

Existing methods of robotic tracking of environmental
boundaries can be categorized into gradient based and gra-
dient free approaches. The former rely on knowledge of the
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field gradient. Examples include methods descended from the
snake algorithms for contour detection [3], [4], gradient based
contour evaluation [3]–[5] or implementation of the artificial
potentials approach [6], cooperative estimation of the gradient
by a group of mobile robots [7], etc. However, it is not rare
that the field derivatives are not directly measured. Meanwhile,
their evaluation on the basis of the field value measurements
requires to perform them at several nearby locations and to
gather these data at a common decision center. Even for
scenarios with many sensors, the former may call for their
unproductive clustering, whereas the latter may be impeded
by communication limitations.

Gradient free methods are mostly concerned with a single
field sensor and do not noticeably attempt at estimation of
the field gradient. In [8], [9], threshold-triggered switching
between two steering angles is advocated; a similar rule with
many angles is proposed in [10] for an underwater vehicle.
Such rules ordinarily entail oscillating around the principal,
i.e., averaged, path, thus actually using systematic and mutu-
ally nullifying shifts sideways to accumulate field data from
a whole corridor. In [11], tracking a fire-front by an aerial
vehicle is underlaid by segmentation of the forest fire images.
These control laws are more or less based on heuristics and
were not substantiated by rigorous and completed justification.
In [12], the suggested PD controller is justified by rigorously
showing its local convergence in radial harmonic fields for
a Dubins-car robot with an infinite control range. Gradient-
free sliding mode controllers were offered in [13] and [14]
in the cases of steady and dynamic fields, respectively, and
a Dubins-car vehicle with a finite control range; they were
substantiated by rigorous global convergence results in generic
smooth fields.

The ever expanding use of autonomous underwater, aerial,
and space vehicles stimulates the interest in robots that face the
need to move in all three dimensions. Many missions on track-
ing of natural boundaries are carried out in 3D workspaces so

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 670



that the robot should regard all three dimensions as feasible
options of motion direction. However, the authors failed to
come across a paper on robotic tracking of environmental level
sets that addresses 3D workspaces. The present paper aims to
fill in this gap, with a focus on nonholonomic, under-actuated
robots with a priori limited control range.

To this end, we use the standard extension of the Dubins car
model to the case of 3D [15], [16]: a robot moves in 3D in the
surge direction, the speed is constant, the control inputs are the
yawing and pitching rates. They are bounded; so the robot’s
turning radius is lower limited. As is discussed in [15], [16],
this model is applicable to missiles, torpedo-like UUV’s, fixed-
wing UAV’s, and in the cases where the acceleration vector is
manipulable within a disk perpendicular to the velocity, like
for many rotary-wing aircraft. There is coupling between the
vertical and horizontal control loops: the “vertical” control has
direct impact on the “horizontal” motion since the only way to
affect the motion in the vertical direction is to alter the angle
between the constant-magnitude velocity and the horizontal.

The considered time-varying scalar fields in 3D are arbi-
trary, up to a few technical assumptions that are inevitable in
some ways. The robot has access to the value assumed by the
field at the robot’s position. The robot is also able to evaluate
the rate of change of this reading in time, e.g., by means
of numerical differentiation. The sensors supply information
about the robot’s coordinate along a certain space direction
and the orientation of this direction relative to the robot.

To sweep the isosurface, we implement spiralling over
it, with drifting in the above direction. Such pattern makes
arbitrarily dense coverage possible (at least for steady fields) if
only the inevitable condition is met: the robot’s turning radius
is enough to handle the contortions of the isosurface.

We propose a navigation law that employs neither gradient
estimation nor systematic sideway exploratory maneuvers. It is
thrifty not only with motion but also with computational
resources: the current observation is directly transformed
into the control input via a few arithmetic operations. We
start with disclosing conditions necessary in order that the
considered robot can perform sweep coverage of the time-
varying isosurface of interest. Then it is rigorously shown that
under minor and, in some ways, inevitable enhancement of
these conditions, the proposed navigation law proves itself
to be sufficient to solve the mission and to ensure global
convergence, despite many limitations such as nonholonomy,
underactuation, finite control range, sensorial deficiency, etc.
This holds provided that the controller is properly tuned;
respective recommendations are explicitly presented. Basic
theoretically grounded findings are underpinned by simulation
experiments.

This paper extends some ideas given in [13], [14], [17]–
[20]. In particular, the model of the robot’s three dimen-
sional kinematics is taken from [18]. Meanwhile, only two
dimensional workspaces were treated in the other papers,
and so their accomplishments are not sufficient to cope with
some special challenges caused by 3D environments. With
an intention only to illustrate this rather than to delve into

full details, we note that the findings of these papers are not
directly applicable even to the 2D projection of the robot since
contrary to their assumptions, this projection does not obey the
Dubins car model. Also those papers give no recipe to resolve
intricacies stemming from coupling between the “vertical” and
“horizontal” control loops.

Organization of the paper. Section II describes the studied
system and gives the statement of the problem, Section III
presents the navigation law. Section IV discusses necessary
conditions and theoretical assumptions. Sections V and VI deal
with the closed-loop system and offer the results of theoretical
analysis and computer simulations, respectively. Due to the
page limit, the proofs of the presented theoretical results will
be given in the full version of the paper.

Throughout the paper, we use the following notations:
• ‖·‖, 〈·; ·〉, and ×, standard Euclidean norm, inner product,

and cross product in R3, respectively;
• r ∈ R3, location of the robot;
• D(r, t), unsteady environmental field in the space R3;
• d(t) = D[r(t), t], its value at the location of the robot;
• d0, targeted field value;
• St(d0) = {r : D(r, t) = d0}, time-varying locus of

points with the field value d0 called isosurface;
• v, robot’s speed;
• u and u, acceleration vector of the robot and the upper

bound on the magnitude of this vector;
• ı, unit vector in the surge direction;
• h, unit vector in the “vertical” direction;
• h, “vertical” coordinate of the robot;
• [h−, h+], interval of robot’s operational “altitudes”;
• ıh, vector h projected onto the plane normal to ı and

then scaled to the unit length;
• d−, d+, respectively, minimum and maximum values of

the field in the operational zone M of the robot;
• ^(~a,~b), angle between the nonzero vectors ~a,~b ∈ R3.

II. SYSTEM DESCRIPTION AND PROBLEM SETUP

In a three-dimensional workspace, a robot moves in the
surge direction with a constant speed v; the pitch and yaw
rates are the control inputs. They are upper limited and so
the robot’s turning radius is lower bounded. A scalar field
is defined on the workspace; this field varies over time and
maps any point r ∈ R3 into D(r, t) ∈ R at time t. Starting
from an occasional location, the robot should arrive at the
moving and deforming isosurface St(d0), which is the locus of
points in space where the field takes a pre-specified value d0.
Afterwards, the robot should not only remain on this isosurface
but also densely sweep it. The robot does not know the field in
advance and can measure only the field value d(t) := D(r, t)
at the current location r = r(t). Neither the field gradient,
nor its parts, nor the time derivative D′t are accessible.

Not the entire surface St(d0) is to be swept. The zone of
interest is defined by means of a certain unit vector h ∈ R3

and the coordinate h along h. They are called the vertical
vector and altitude, respectively, although these names literally
conform only to a particular howbeit fairly common scenario.
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The duty of the robot does not extend outside a given interval
of altitudes [h−, h+], h− < h+, which may be based on e.g.,
allocation of duties among many robots, operational altitude
range of the robot, or priorities among altitudes.

If St(d0) expands from h− to h+, sweeping the targeted part
Set (d0) := {r ∈ St(d0) : h ∈ [h−, h+]} of St(d0) involves
reaching h±, after which h ∈ [h−, h+] cannot be retained due
to the inertia, unless the velocity is horizontal. So among many
patterns of dense sweep coverage of Set , densely coiling on
Set with nearly horizontal loops looks like a good option since
then the velocity direction is automatically close to horizontal.
Another attractive feature is that no demands to the turning
capacity of the robot are imposed by this pattern itself, unlike,
e.g., the popular lawn-mowing survey. The small vertical step
between the coils should be reversed near the extreme altitudes
to respect the range [h−, h+]. If the examined part Set (d0) of
the isosurface has several connected components, only one of
them should be covered.

The sensors measure the orientation of h relative to the
robot’s body and the altitude h(r) of the robot.

Defintion 1: The robot is said to perform coiling sweep
coverage of the isosurface within the interval [h−, h+] of
altitudes and with the vertical speed vh ∈ (0, v) if d(t)→ d0

as t → ∞ and there is a partition of [0,∞) into uniformly
bounded intervals 0 < τ−0 < τ+

0 < τ−1 < τ+
1 < . . . such

that τ±k → ∞ as k → ∞ and for large k, the altitude
h(t), t ∈ [τ−k , τ

+
k ] runs over the entire [h−, h+] with the

constant vertical velocity ḣ ≡ ±vh, where the sign reverses
as k increases by one.

Since d(t)→ d0 and the robot travels over a connected path,
the robot is, as a rule, constantly close to a certain connected
component C of Set since some time. If vh ≈ 0, its motion
with the speed v � vh looks like spiralling around C, whereas
the requirement of running the entire range [h−, h+] needs and
anticipates the assumption that C spans from h− to h+. For
steady fields, the robot sweeps the whole of C with an error
proportional to vh as t runs over [τ−k , τ

+
k ], k ≈ ∞ by [21,

Lemma 4.1] and so an arbitrarily high density of coverage
can be achieved by picking vh small enough.

We use the classic model of the 3D unicycle [18]:

ṙ = vı, dı/dt = u ∈ R3, 〈u; ı〉 = 0, ‖u‖ ≤ u, (1)

where u > 0 is given and u is the control input. The equation
‖ı‖ ≡ 1 from the definition of ı is maintained true thanks
to 〈u; ı〉 = 0 from (1) and in turn means that the robot’s
speed is constantly v. By (1), the robot can follow paths whose
curvature does not exceed u/v. According to [18, Rem. 2.1],
the model (1) applies to, e.g., fixed-wing UAV’s, torpedo-like
UUV’s, helicopters, to name just a few examples, and in this
model, the control u can be replaced by the pitch q and yaw
r rates due to a one-to-one correspondence u↔ (q, r).

III. THE PROPOSED CONTROL LAW

We introduce a control law that is well posed only if
the robot is not vertically oriented: sin^(ı,h) 6= 0. Then
the projection h − ı cos^(ı,h) of the vertical vector h

onto the plane P normal to ı is nonzero and so its scaling
ıh := h−ı cos^(ı,h)

sin^(ı,h) to the unit length is well defined.
We propose a switching controller with three modes: P

(preliminary), S+ (spiralling upward), and S− (spiralling
downward). Two its parameters Tp > 0 and vh > 0 have the
meaning of the duration of mode P and the desired vertical
speed, respectively; the latter defines the desired vertical
velocity:

vl := 0 in P, vl := vh in S+, vl := −vh in S−.

The controller starts in mode P; the switching logic is given
by Fig. 1. The control input is generated as follows:

u = −uh · sgn
[
ḣ− vl

]
ıh

+ ud · sgn
[
ḋ+ χ(d− d0)

]
ıh × ı. (2)

Here ud ∈ (0, u) and the map χ(·) are selectable and tunable,
and

uh :=
√
u2 − u2

d. (3)

Since ıh, ıh×ı, ı are all unit vectors and they are perpendicular
to one another, the third and fourth relations from (1) are
satisfied for u given by (2), as is required. Since the proposed
controller is discontinuous, the solutions of the closed-loop
system are meant in the sense of Filippov’s definition [22].
Any method that gives access to the time derivatives ḣ, ḋ is
welcome; numerical differentiation is among them.

Fig. 1. Switching logic

IV. NECESSARY CONDITIONS FOR THE MISSION TO BE
FEASIBLE AND ASSUMPTIONS OF THEORETICAL ANALYSIS

We first disclose requirements that are necessary for the
mission to be feasible. To this end, we define the horizontal
section (of the isosurface) at the altitude h∗ as the dynamic
curve given by Ct(d0|h∗) := {r ∈ St(d0) : h(r) = h∗}. For
any time t∗ and point r∗, the dynamic isosurface St(d∗), d∗ :=
D(r∗, t∗) and horizontal section Ct(d∗|h∗), h∗ := h(r∗) that
pass through r∗ at time t∗ are said to be associated. We also
need the following notations:
• ∇D, spatial gradient of the field;
• N(t, r) = ∇D(t, r)/‖∇D(t, r)‖, unit vector normal to

the associated isosurface;
• αh = arcsin 〈N ;h〉, angle between N and the horizontal;
• Na

h = (N − h sinαh)/ cosαh, normalized projection of
N onto the horizontal plane;

• ha
N = (h−N sinαh)/ cosαh, normalized projection of
h onto the plane tangential to the isosurface;
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• ~τ = h×N/ cosαh, unit vector tangential to the associ-
ated horizontal section;

• D′′, spatial Hessian;
• II[V ;V ] = −〈D′′V ;V 〉 /‖∇D‖, second fundamental

form (shape tensor) of the associated isosurface;
• λ(t, r), velocity of the isosurface in the front direction;
• α(t, r), acceleration of the isosurface in the front direc-

tion;
• ~ω(t, r), angular velocity at which the isosurface with the

fixed field value rotates with respect to itself;
• ρ(t, r), density of isosurfaces;1

• gρ(t, r), proportional growth rate of ρ with time;
• ∇∇ρ(t, r), tangential proportional gradient of the density,

i.e., the tangential (to the associated isosurface) vector
such that for any tangential vector V ,

〈∇∇ρ;V 〉 =
1

ρ(t, r)
lim

∆s→0

ρ(t, r + V∆s)− ρ(t, r)

∆s
.

• nρ(t, r), normal proportional growth rate of ρ:

nρ(t, r) :=
1

ρ(t, r)
lim

∆s→0

ρ(t, r +N∆s)− ρ(t, r)

∆s
.

Rigorous definitions of these quantities and their expressions
in terms of the field derivatives can be found in [14], [23] for
2D setting; extension of these on fields in 3D is straightfor-
ward.

Now we unveil conditions necessary for the mission to be
feasible with vertical speeds vh ≈ 0, more precisely, with
vh → 0. This focus is justified just after Definition 1.

Proposition 1: Suppose that the robot can trace the horizon-
tal section Ct(d0|h∗) at any altitude h∗ ∈ [h−, h+], starting
at any time in any tangential direction from any location on
this section. Suppose also that in a vicinity of this section,
the field D(·) has continuous first and second derivatives, and
∇D(·, ·) 6= 0. Then at any time and at any point of Set ,

|λ| ≤ v cosαh. (4)

If additionally N is not vertical (i.e., cosαh 6= 0), then

u
√
v2 cos2 αh − λ2 ≥

∣∣∣II[V±;V±] + α+ 2 〈~ω;V±〉
∣∣∣, (5)

where V± := λ tanαhh
a
N ± ~τ

√
v2 − λ2 cos−2 αh

and the inequality holds with any sign in ±.
To drive the output d to the targeted value, some form of

output controllability is commonly needed. So the given value
of d should not predetermine the sign of ḋ and, moreover,
when moving over an isosurface ḋ = 0, the robot should be
free to get off it with making the field value both larger and
smaller, i.e., any sign of the second time-derivative d̈ can be set
by choosing a proper feasible control u. It can be demonstrated
that controllability in this sense is equivalent to (4), (5) with
≤ being replaced by < .2

1It evaluates how many isosurfaces lie within the unit distance from S(d∗),
where their “number” is assessed by the range of the associated field values.

2After this replacement, (4) implies that cosαh 6= 0.

We assume that the robot is controllable in this sense
irrespective of its position within the zone of operation M.
For the sake of convenience, M is delineated in terms of the
extreme values h− < h+ and d− < d+ (d0 ∈ [d−, d+]) taken
in this zone by h and d, respectively. We also take into account
that when reaching the extreme altitudes h± with the speed
vh > 0, the robot cannot instantly reverse the vertical velocity
and so transitions between coiling upwards and downwards
involve violation of h ∈ [h−, h+]. So we choose an admissible
extent ∆h > 0 of violation and put

M := {(t, r) : d− ≤ D ≤ d+,±(h− h±) ≤ ∆h}. (6)

We also take precautions against degeneration of the afore-
discussed strict inequalities into equalities, provided that time
or location r go to infinity. Finally, we arrive at the following.

Assumption 1: The field D(·, ·) is twice continuously dif-
ferentiable in a vicinity of the domain (6) and its horizontal
section at any altitude from [h−, h+] is not empty. There
are constants ∆u > 0 and ∆λ > 0 such that the following
enhancements of (4) and (5) hold everywhere in the zone M:

|λ| ≤ v cosαh −∆λ, (7)

u
√
v2 cos2 αh − λ2

≥
∣∣∣II[V±;V±] + α+ 2 〈~ω;V±〉

∣∣∣+ ∆u. (8)

Since the smooth trajectory of the robot should lie on the iso-
surface, it is natural to exclude singularities of the isosurface.

Assumption 2: In the domain (6), the field has no spatial
singularities ∇D 6= 0, and this trait does not degenerate: there
is a constant bρ > 0 such that ‖∇D(t, r)‖ ≥ b−1

ρ ∀(t, r) ∈
M.

Assumption 3: The quantities gρ, nρ,∇∇ρ, λ, ~ω,κ are
bounded in the operational zone:

|gρ| ≤ bg, |nρ| ≤ bn, ‖∇∇ρ‖ ≤ b∇, |λ| ≤ bλ,
‖~ω‖ ≤ bω, κ ≤ bκ ∀(t, r) ∈M, (9)

where κ is the maximal (unsigned) principal curvature of the
associated isosurface (equivalently, the maximal in absolute
value eigenvalue of the second fundamental form II) and the
constants bg, bn, b∇, bλ, bω, bκ do not depend on (t, r) ∈M.

Before the proposed control law is put in use, the robot
is set in a special posture. We omit discussion of possible
transient maneuvers because of their banality and merely state
their desired outcome as the following.

Assumption 4: The initial position of the robot (rin, ıin) is
with h ∈ (h−, h+) and a horizontal orientation 〈ıin;h〉 = 0.

Under this assumption, choosing the continuous control
input so that 〈~u;h〉 ≡ 0 and

‖~u‖ ≡ u (10)

ensures that the robot makes either left or right turn in the
initial horizontal plane. In any case, 2π/u units of time are
need to perform the full turn and the respective path is a circle.
The disc D

l/r
in bounded by this circle is said to be initial,
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where the index l or r is used in the case of the left and
right turn, respectively. We finally require that both Dl

in and
Dr

in are covered by the zone (6), and the turning rate of the
robot exceeds the average rate of rotation of the isosurface
associated with the initial location rin about the vertical axis,
where averaging is over some initial time interval.

Assumption 5: There exists a natural number k such that
during the interval [0, Tk] , Tk := 2πk/u (i) the projection
Na

h(t, rin) of the unit normal onto the horizontal plane rotates
by less than 2π(k−1) and (ii) the zone (6) contains the initial
discs: d− < D(t, r) < d+ ∀t ∈ [0, Tk], r ∈ D

l/r
in .

V. MAIN RESULTS

Our first result shows that the controller from Sect. III is
inherently capable to execute the mission under the assump-
tions, which are inevitable to some extent, as is advocated in
Sect. IV.

Theorem 1: Suppose that Assumptions 1–5 hold. Then
the parameters vh, uh, ud, χ(·), Tp of the control law from
Section III can be chosen so that the closed-loop system
presents the following properties:

(i) The robot performs coiling sweep coverage of the iso-
surface, as detailed in Definition 1;

(ii) The robot is never oriented vertically ı× h 6= 0 ∀t.
Moreover, let Qin = {(r, ı)} be a compact set of initial states
that satisfy Assumptions 4 and 5 (with a common k). For
any vh > 0, common values of the above parameters can be
chosen so that the claims (i) and (ii) are true with the speed
of the vertical drift vh ≤ vh whenever the initial state belongs
to Qin.

Now we turn to specific recommendations on controller
tuning. Two parameters ud, χ(·) are chosen in two steps: the
bounds given at the first step are enhanced at the second one.

Preliminary choice of ud from (2). Putting u := ud in (10)
gives rise to larger disks D

l/r
in (ud) ⊃ D

l/r
in . For ud ≈ u, they

are close to D
l/r
in and so lie inside the zone (6) for t ∈ [0, Tk]

due to Assumption 5. Hence, Assumption 5 remains true after
replacing u by ud if ud < u is close enough to u. (This is
true uniformly over all initial states from Qin in the context of
the last claim from Theorem 1.) Such ud ∈ (0, u) is chosen;
it may be increased at a subsequent step of tuning.

Preliminary choice of χ(·) from (2): This is a continuous
and piece-wise smooth function such that

χ(0) = 0, χ(z) > 0 ∀z > 0, χ(z) < 0 ∀z < 0, (11)

χ := sup
z∈R
|χ(z)| <∞, χ′ := sup

z∈R
|χ′(z±)| <∞, (12)

χρ := bρχ < ∆λ,

where bρ is taken from Assumption 2. Relations (11) and (12)
are met by, e.g., the linear function with saturation and by
χ(z) = a arctan(z/b), a, b > 0. The upper bounds χ, χ ′ from
(12) may be enhanced at the next step.

Final choice of ud, χ(·), vh. To serve it, a real η ∈ (0, 1)
is picked and the parameters are subjected to the following:

(vh,χ + 2bλ)vh,χ < (1− η2)∆2
λ, vh,χ := vh + χρ; (13)

v
√
u2 − u2

d + χρ(χρbn + 2vb∇ + 2bg)

+ [2vbκ + bω] v

√
(vh,χ + 2bλ)2 + 4η2∆2

λ

η∆2
λ

vh,χ

+
u(vh,χ + 2bλ)vh,χ

2η∆λ
+ v|u− ud|+ χχ ′ < ∆u, (14)

vh < min{v, vh}, v −
√
v2 − v2

h < ∆h

√
u2 − u2

d. (15)

Here v, u are taken from (1), ∆λ,∆u from (7), (8),
bλ, bn, b∇, bg, bκ , bω from (9), and vh from Theorem 1. Rela-
tions (13)—(15) are feasible. Indeed, since the l.h.s. of both
(13) and (14) goes to 0 as vh → 0, χ → 0, χ ′ → 0, ud → u,
whereas the r.h.s. is a positive constant, (13) and (14) are
satisfied by all small enough vh, χ, χ

′ and ud close enough
to u. This is used to put extra bounds on χ(·) in (12) and ud,
after which the final choice of χ(·) and ud is performed. Then
(15) can be met by further decreasing vh, if necessary.

Parameter uh from (2) is defined by (3).
Tp from Fig. 1: Tp ≥ 2πk/ud, where k is taken from

Assumption 5.
Theorem 2: Let Assumptions 1–5 be true. Suppose that the

parameters of the navigation law meet the above recommen-
dations. Then the claims (i) and (ii) of Theorem 1 are valid
for all initial states from Qin.

VI. COMPUTER SIMULATION TESTS

Table I lists the numerical values of the basic parameters
used in the simulations; the symbol ¡ stands for the unit of
measurement of the field value. Control update period was
0.1 s, and the readings of d and h were contaminated by
Gaussian additive noises with standard deviation σ = 0.1 m in
all cases. A linear function with saturation was chosen as χ(·):

χ(p) :=

{
µp/δ if |p| ≤ δ
sgn(p)µ otherwise

where δ = 5 ¡ and µ = 0.4 ¡ /s. Simulations were performed
using MATLAB. Multimedia of the extended versions of all
test are available at goo.gl/ankgVA.

TABLE I
PARAMETERS USED FOR SIMULATION

d0 = 10 ¡ v = 10 m/s vh = 0.05 m/s
Tp = 15 s ū = 5 rad/s ūh = 0.05 rad/s

The first test deals with the fairly simple scenario of a
radial and steady scalar field D(r) = f(‖r − r0‖), where r0

is its center and the smooth function f(d) increases from 0
without limits as d ≥ 0 grows up. Its isosurfaces are spheres,
whose totality is depicted in Fig. 2(a–b). The targeted d0-
isosurface is the sphere with a radius of 50 m. Starting from
a remote location, the robot quickly reaches the desired d0-
isosurface, as is shown in Fig. 2(a). Then it starts moving over
this isosurface, while coiling around it upwards; a principal
part of this maneuver is shown in Fig. 2(b). After reaching
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the upper end of the altitudinal range h+ = 135 m, the robot
proceeds with moving over the isosurface, while coiling down-
wards. This maneuver is terminated on reaching the lower end
h− = 65 m of the assigned altitudinal range. After this an
upward coiling is commenced, and so on. Fig. 2(c) displays
an excellent performance of the algorithm during six cycles of
upward/downward coiling, despite of the measurement errors.

(a) (b)

(c)

Fig. 2. Tracking a steady spherical isosurface

The next scenarios are more challenging: they deal with un-
steady fields and isosurfaces with rather sophisticated shapes.
This troubles visualization of the results in 3D so that we
depict only one surface that consists of points at a given (small)
distance from the targeted isosurface and inherits its shape.3

In Fig. 3, the targeted isosurface looks like a vertical 3D five
pointed star circumvented by circle of 140 m diameter. The
star moves along a circular orbit with a radius of 50 m with the
angular velocity ≈ 0.1 rad/s. While monitoring the altitudinal
range between h− = 50 m and h+ = 155 m, the robot
faces the situations where the horizontal section of the surface
splits into several connected components, as is illustrated in
Fig. 3(d) (which details Fig. 3(c)), and so the robot has to
choose which of the related 3D “rays” of the star should be
swept over. As follows from Fig. 3(e), the algorithm makes
the “right” choice by picking the only ray that rises up to h+,
while having other options open to it. In this (and the next)
test, the necessary condition (5) is violated: near the points
where the “rays” meet each other, the second fundamental
form II[·; ·] is excessively large. (We recall that this form is
responsible for the curvatures of the normal sections of the
surface.) Although arrival at exactly such a point does not seem

3We prefer this surface to resolve the dilemma between drawing S as non-
transparent or transparent: in the first case, robot’s path looks dashed and
incomplete due to vanishing from view of its parts that are not only behind S
but also inside S; in the second case, the picture becomes oversaturated with
details, the path looks as highly entangled and is poorly comprehensible.

as highly probable, this does happen in the test and causes an
acute splash of d at t ≈ 150 s in Fig. 3(e). Overall, the robot
quickly reaches the desired d0-isosurface and then effectively
monitors it, in spite of the surface motion and violation of the
necessary conditions.

(a) (b)

(c) (d)

(e)

Fig. 3. Tracking a boundary moving along the orbit

Fig. 4 is concerned with a field whose isosurface has a
rather irregular shape: it not only combines convexities with
concavities but also has three non-identical protrusions, each
glued to the bottom of the surface main body and in the form
of an irregularly deformed bubble. The field slowly rotates
about a vertical axis.4 Violation of condition (5)5 is more
systematic: it holds not only at the junction of the bubbles
but also at the bottom of the vertical coombs (see Fig. 4(a))
and at the top of the vertical ridges (see Fig. 4(c)). Unlike
the junctions, the robot has to regularly cross these tops and
bottoms when coiling around the surface. So in Fig. 4(g)
the vertical splashes do not look like a one-time occurrence;
howbeit, the eventual average field error is ≈ 1.3 ¡, which
looks as a good outcome in face of the surface intricacies.
As is highlighted in Fig. 4(f), lower horizontal sections of the

4Because of the motion of the surface, the past path of the robot looks as
if penetrating the surface in some snapshots. In fact, the path bypasses the
surface, as can be seen from the multimedia at goo.gl/ankgVA.

5We recall that in particular, it subdues the surface contortion to the turning
capacity of the robot.
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surface split into three connected components; every of them
is attributed to a particular “bubble” and spreads down to the
lower end≈ 50 m of the patrolled altitudinal range. In different
rounds of coiling around the surface, the algorithm chooses
different “bubbles” to be swept. In Fig. 4(e), the small compact
coil is the result of coiling around the tightest “bubble”; the
snapshot corresponds to a moment when this “bubble” has
moved to the invisible background. Overall, the robot still
satisfactory solves the mission, although the convergence in
Fig. 4(g) is not as regular as in Figs. 2, 3.

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 4. Tracking a rotating sophisticated boundary
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